1	(a)	(pushing rubber cover) volume reduced (when volume reduce), pressure goes up		M1 A1	
	(b)	$1 \times (10^5) \times 60 = 1.5 \times (10^5) \times V$ 40 (cm ³) reduction in volume = 20 cm ³ or 1/3		C1 C1 A1	
	(c)	(ave) speed of mols/particles/atoms greater at high temp NOT energy/KE stronger/more collisions with walls OR greater pressure		B1 B1	[7]
2	(a)	pV = const in any form, words or recognisable symbols NOT p proportional to $1/V$, NOT p = $1/V$, any mention of T gets B0		B1	
	(b)	p × V is the same each time OR when p is doubled, V is (always) halved so if gas obeys the law, the temperature must have been constant		M1 A1	
	(c)	$p_1V_1 = p_2V_2$ $1.2 (\times 10^5) \times 75 (\times A) = 3.0 (\times 10^5) \times l (\times A)$ l = 30 mm distance moved = 45 mm e.c.f.		C1 C1 C1 A1	[7]
3	(a)	typical random path drawn, at least 3 abrupt changes of direction	B1		
	(b)	air molecules hit dust particles in all directions/move it in all directions just as likely to be up as down (allow marks scored on diagram)	B1 B1		
	(c)	random movements smaller OR slower movement			

(c) random movements smaller OR slower movementOR less energy OR movement decreasesB1[4]

4	(a	(i)	random high speed (between collisions)	B1 B1
		(ii)	hit walls	B1
			OR many hits/s OR hit very often	B1
	(b)	par par	ticles vibrate (more) OR electrons gain energy ticle to particle transfer OR flow of free electrons	B1 B1
	(c)	75 : 240	× 3200 OR ml) 000 J OR 240 kJ OR 2.4 × 10⁵J	C1 A
				[Total: 8]

5	(a)	air molecules hit particles or vice versa	B1	
		air molecules have speed/moment/energy	B1	
		hits uneven or from all directions	B1	
		hits (by small molecules) can move a large particle or moves particles small distances	B1	4
	(b) (ii)	most energetic/fastest molecules need energy to overcome forces/break bonds/separate mols. so work must be done/energy used as work	B1 B1 B1	3 [7]

6	(a) (i)	random	B1	
	(ii)	hit and rebound	B1	[2]
	(b) (i)	increase or further apart	B1	
	(ii)	increase or move faster	B1	[2]
	(c)	random, fast in gas to vibration in solid	B1	
	(ii)	long way apart in gas to very close or touching	B1	[2] Total [6]

7	(a		Water molecules at higher temps. have higher (av) k.e. / energy Higher energy molecules (have greater chance to) escape the surface	B1 B1	
			Higher energy molecules have energy to break liquid "bonds" or separate liquid molecules or more evaporation at 85°C (lowers level)	B1	3
	(b)		Heat for evaporation = 34 500 – 600 = (33 900)	C1	
			Sp. latent heat of evaporation = heat/mass evap. or 33 900 / 15 2260 J/g (method and working correct, but no heat loss	C1	
			used, 2/3)	A 1	
			(600 added or 34 500 used can score 2 max)		3
8	(a)	(i)	any suitable random motion molecules hit walls	1 1	
		(ii)	1.		
			rebound/bounce back or many hits per unit area or per unit time or collisions create force 2.	1	
			(av) k.e./speed of molecules increases more hits(/sec) or harder hits	1 1	5
	(b)		$p_1v_1 = p_2v_2$ quoted or any recognisable substitution	1	
			$2 \times 10^5 \times 0.35 = 5 \times 10^5 \times v$	1 1	
			volume = 0.14 (m ³)	•	(8)

9	(a)	air molecules hit dust particles		M1		
		directions air molecules fast moving/high energy	A1 B1	3		
	(b)	any attempt to use p x v = constant or correct proportion fraction 2 x 80/25 seen $p = 6.4 \times 10$ (Pa)	C1 C1 A1	3		
		$\beta = 0.4 \times 10 (1 a)$		[6]		

10 (a)	Some have extra/more energy than others	B1	
	most energetic leave surface/ break liquid bonds etc	B2	M2
(b)	evaporation occurs strictly at the surface/at all temperature	B1	
	boiling occurs throughout liquid/ at one temperature (at normal at. pr.)/100°C	B1	2
(c)	energy supplied = Wt /60 x 120	C1	
	sp.latent heat = energy/mass evaporated or 60 x 120/3.2	C1	
	value is 2250 J/g	A1	3
			[7]